## The Binary distribution

The Binary distribution is concentrated in just two points. In most applications the Binary distribution as an "indicator" variable for a certain event. That is, the variable is either 0 or 1 , and it is 1 if and only if the corresponding event actually occurs.

Assume e.g., that a certain project cost, K , contributes to the total cost only if an event E occurs. E may for instance be a certain accidental event. In other words, if E occurs, one has to pay the cost K, while if E does not occur, then K can be neglected.

Now, let X be 1 if E occurs and 0 otherwise. Assume that the probability of E is assessed to be p , some number between 0 and 1 . The cost K itself may have a suitable lognormal distribution. The experienced cost may then be expressed as:

$$
\text { Experienced cost }=\mathrm{H}=\mathrm{X} * \mathrm{~K}
$$

Note that even though K is lognormally distributed, H is not. In fact there is a positive probability of ( $1-\mathrm{p}$ ) that H is exactly 0 .

In the Binary distribution the key numbers, "a", "b" and "c" are interpreted as follows:
"a"
=
Min. of two possible values.

```
"b"
```

$=$
The expected value.
"c"
$=$
Max. of two possible values.

To get a sensible distribution the specified values must satisfy:

$$
" \mathrm{a} " \leq \mathrm{"b} " \leq " \mathrm{c} "
$$

If the key numbers are not ordered according to these rules, DynRisk will reorder them before doing any calculations.

Note! In the case of indicator variables, i.e., where " a " is 0 and " c " is 1 , then the expected value is equal to the probability of getting the outcome ' 1 '. Thus, in such cases it is fairly easy to specify the expectation, i.e., the " b " parameter. In the general case where the " a " and the " c " values are say A and C respectively, and the probability of the value $C$ is assessed to be, say $p$, the expectation is given by the following formula:

Expectation $=" \mathrm{~b} "=\mathrm{A}(1-\mathrm{p})+\mathrm{Cp}$
Since p is always a number between 0 and 1 , it follows that " b " always should be a number between "a" and " $c$ ". Especially, if $p$ is close to 1 , then " $b$ " is close to " $c$ ", while if $p$ is close to 0 , then " $b$ " is close to " $a$ ".

If we are given the values of " $a$ ", " $c$ " and the expectation, " $b$ ", say A, C and $B$ respectively, we can calculate the corresponding probability, $p$ of getting the " c " value using the following formula:

$$
\text { Probability of " } \mathrm{c} \text { " }=\mathrm{p}=(\mathrm{B}-\mathrm{A}) /(\mathrm{C}-\mathrm{A})
$$

